
1 Introduction

Consider a tuple of containers of positive integral size C = (c1, c2, . . . , cn), with ci ≥ 0, and a process
which repeatedly reduces the size of some selection of s of those containers by one. We denote such a
problem with the tuple (C, n, s). Let t be the number of steps taken before no set of containers of size s
can be found with strictly non-zero remaining capacities. We wish to develop an upper bound, tmax for
t, and show that the algorithm in section 3 achieves that bound.

We denote the sizes of containers at the “current” step as ci, and at the following step as c′i. Values

following an arbitrary step x are denoted c
(x)
i .

2 Upper bound on the number of steps

A trivial upper bound, t0, on tmax can be found by observing that

n
∑

i=1

c′i =

s
∑

i=1

(ci − 1) +

n
∑

i=s+1

ci (1)

=

(

n
∑

i=1

ci

)

− s, (2)

so each step reduces the available total capacity by s and therefore

t0 =

⌊∑

ci
s

⌋

(3)

is a bound on tmax.
Now consider a partition of the problem into two parts, L and R, such that

|L| < s, (4)

and

min
i∈L

ci ≥

⌊
∑

i∈R ci

s− |L|

⌋

. (5)

Observe that we can reduce the set of partitions which must be examined in this manner: If a partition
exists which fulfils inequality 5, where cj ≥ mini∈L ci for some j ∈ R, we can move j from R into L
without affecting the inequality, because the left-hand side is unchanged, and the right-hand side is
made smaller. This means that we only need consider partitions where all containers smaller than some
bound are placed in R, and those larger than or equal to the bound are placed in L, since we can always
convert a bounding partition not of that form into a bounding partition of that form, without losing the
bounding property.

With this in mind, we define the predicate B
(x)
q as

B
(x)
q : c(x)q ≥

⌊

∑n

i=q+1 c
(x)
i

s− q

⌋

, (6)

where
c1 ≥ c2 ≥ . . . ≥ cn ≥ 0. (7)

Theorem 1 If B
(x)
q is true for some q, then

tq =

⌊

∑n

i=q+1 cj

s− q

⌋

(8)

is an upper bound on the number of steps possible.

Proof: . . . 1 �

Corollary 1 An upper bound on the number of steps possible is

tmax = min

(

t0,min
q:Bq

tq

)

= min

(

⌊∑n

i=1 ci
s

⌋

,min
q:Bq

⌊

∑n

i=q+1 cj

s− q

⌋)

. (9)

3 Algorithm

The algorithm starts with a sorted sequence of containers, c1, c2, . . . , cn, meeting the ordering constraint
(7).
We define a step in the algorithm, C ′ = fs(C) for some s ≤ n, to be the process where the s largest

containers are reduced in size by one, and the tuple re-ordered (with a stable sort, WLOG) to fulfil the
constraint (7). The algorithm terminates when no more steps can be performed — i.e. when there are
fewer than s bins with any free space in them. Specifically, the algorithm terminates when there is some
ci (i ≤ s) where ci = 0. This implies that cs = 0 as well, by the ordering condition (7).

Theorem 2 The state of B
(x)
q is preserved through a step of the algorithm: if B

(x)
q is true, then B

(x+1)
q

is also true; if B
(x)
q is false, then B

(x+1)
q is also false.

Proof: If B
(x)
q is true, then

c(x+1)
q = c(x)q − 1,

since cxi+1 can be at most ...

If B
(x)
q is false, then ...2 �

Since the state of B
(x)
q is preserved for all x, we may simply refer to Bq.

4 Achievable bounds on the number of steps

We now prove that the bound from theorem 1 is achievable using the algorithm in section 3. We do this
in three stages: first, we demonstrate that any problem may be decomposed into two parts, one with a
trivial solution, and a reduced problem where Bq is false for all 1 ≤ q < s. We then show that if the
reduced problem achieves its bounds, then the whole problem does. Finally we demonstrate that the
reduced problem does achieve its bounds.
Consider a problem, (C, n, s). Now, there is either some q in equation 1 which gives the value to

tmax (and we call that value of q the bounding container), or there is no such q and the trivial bound
dominates.

Theorem 3 For a problem (C, s, n) with no bounding container, the algorithm achieves the bound of
⌊∑

n
i=1

ci

s

⌋

steps.

Proof: If we cannot achieve the bound, we must terminate after some number of steps x, short of that

bound. Specifically, we have the termination condition that c
(x)
s = 0, and more generally, c

(x)
i > c

(x)
i+1 = 0

for some i < s. Now, since there is no bounding container, Bq is false for all 1 ≤ q < s, and in particular

1If such a partition exists, we can maximise the space used by reducing, at each step, every container in (the far larger)
L, and as few in R as we can. Doing so does not change the relation (5), since it reduces mini∈L ci by at most 1, and
∑

i∈R
ci by s− |L|, which is greater than one, from equation (4). In this process, we can place at most mini∈L ci steps by

considering the set of containers L (since every container in L is reduced by 1 each step, we are bound by the minimum
sized container in L). However, considering the set of containers R, we have a total capacity of

∑

i∈R
ci, and each step

removes one unit of capacity from each of s− |L| containers. Thus, we can place no more than

tmax ≤ tLR =

⌊

∑

i∈R
ci

s− |L|

⌋

steps. Since this latter bound is smaller than the former, by (5), it dominates.
2This is the 3 diagrams with A and B cases

Bi is false. So, we have:

0 < c
(x)
i (termination condition) (10)

<

⌊

∑n

j=i+1 c
(x)
j

s− i

⌋

(Bi is false) (11)

= 0, (c
(x)
j = 0∀j > i) (12)

which is a contradiction. �

Theorem 4 In a problem, (C, n, s), with bounding container q, no container is moved at any step to
the opposite side of q.

Proof: �

Theorem 5 In a problem, (C, n, s), with bounding container q, we may decompose it into two subprob-
lems: (L = {c1, . . . , cq}, q, q) and (R = {cq+1, . . . , cn}, s− q, n− q), which are between them equivalent to
the original problem, and that tmax(R) = tmax(C).

Proof: By theorem 4, no container is moved across the q boundary. This implies that the decomposed
problems (L, q, q) and (R, s − q, n − q) are always independent of each other. We can observe trivially
that tmax(L) = cq, since every element of L is reduced by one at every step, and the algorithm must

therefore stop when its smallest element, c
(x)
q = 0. Similarly, we can observe that tmax(R) ≤ t0(R) =

⌊

∑n

i=q+1 ci/(s− q)
⌋

. Since q is the bounding container, Bq is true, so tmax(L) = cq ≥ t0(R) ≥ tmax(R),

and therefore the bound on R is the tighter bound, and so3

tmax(C) =

⌊

∑n

i=q+1

s− q

⌋

= tmax(R)

�

Theorem 6 In a decomposition of the form in theorem 5, the problem (R, s− q, n− q) has no bounding
container.

Proof:

�

Theorem 7 The algorithm always achieves the upper bound (9), and is therefore optimal.

Proof: If the problem has no bounding container, then by theorem 3, it achieves the trivial t0 upper
bound. Alternatively, if the problem has a bounding container q, then, by theorem 5, we may decompose
it into an unconstrained part, (L, q, q), and a constrained part, (R, s − q, n − q). The constrained part,
by theorem 6, has no bounding container and therefore, by theorem 3, achieves its bound of

⌊

∑n

i=q+1 ci

s− q

⌋

steps. This is equal to the upper bound of the full problem, (C, s, n), since q is its bounding container. �

5 Conclusion

We have demonstrated that, for a fixed stripe width, the chunk allocator algorithm implemented in btrfs
is optimal, and we can place a hard upper bound (equation 9) on the number of allocation steps that
the algorithm can perform, for any given set of storage devices.

3does this follow?

